LMFAO Index du Forum
LMFAO Index du ForumFAQRechercherS’enregistrerConnexion

Algorithm Design Tardos Pdf Download

Poster un nouveau sujet   Répondre au sujet    LMFAO Index du Forum -> HORS SUJET -> Jeux
Sujet précédent :: Sujet suivant  
Auteur Message

Hors ligne

Inscrit le: 22 Mar 2016
Messages: 266
Localisation: Toulouse
Point(s): 750
Moyenne de points: 2,82

MessagePosté le: Lun 31 Oct - 07:14 (2016)    Sujet du message: Algorithm Design Tardos Pdf Download Répondre en citant

Algorithm Design Tardos Pdf Download > urlin.us/4uddz

Algorithm Design Tardos Pdf Download

Algorithm Design 1.Representative Problems 1.1 Stable Matching 1.2 Five Represenative Problems 2.Algorithm Analysis 2.1 Computational Tractability 2.2 Asymptotic Order of Growth 2.3 Common Running Times 3.Graphs 3.1 Basic Definition 3.2 Connectivity and Traversal 3.3 Implementing Graph Search 3.4 Bipartiteness 3.5 Connectivity in Digraphs 3.6 Topological Order in DAGs 4.Greedy Algorithms –Coin Changing 4.1 Interval Scheduling 4.2 Minimizing Lateness 4.3 Optimal Caching 4.4 Shortest Paths in a Graph –Minimum Spanning Trees –Prim, Kruskal, Borvka 4.7 Single-Link Clustering 4.9 Min-Cost Arborescences 5.Divide and Conquer 5.1 Mergesort 5.3 Counting Inversions 5.4 Closest Pair of Points –Randomized Quicksort –Median and Selection –Master Theorem 5.5 Karatsuba's Algorithm –Strassen's Algorithm 5.6 Convolution and FFT 6.Dynamic Programming 6.1 Weighted Interval Scheduling 6.2 Segmented Least Squares 6.3 Knapsack Problem 6.4 RNA Secondary Structure 6.5 Sequence Alignment 6.6 Hirschberg's Algorithm 6.7 Bellman-Ford Algorithm 6.8 Distane Vector Protocol 6.9 Negative Cycles 7.Network Flow 7.1 Max-Flow and Min-Cut 7.2 Ford-Fulkerson Algorithm 7.3 Capacity-Scaling –Shortest Augmenting Path –Blocking Flow –Unit Capacity Networks 7.4 Bipartite Matching 7.5 Disjoint Paths 7.6 Demands and Lower Bounds 7.7 Survey Design 7.8 Airline Scheduling 7.9 Image Segmentation 7.10 Project Selection 7.11 Baseball Elimination 7.12 Assignment Problem 8.Intractability 8.1 Polynomial-Time Reductions 8.2 Vertex Cover 8.3 Independent Set 8.4 Set Cover 8.5 3-Satisfiability 8.6 Hamiltonian Cycle 8.7 3-Dimensional Matching 8.8 Graph 3-Colorability 8.9 Subset Sum 8.10 P vs. W. MIT Press, 2009. Freeman, 1983. Some of the lecture slides are based on material from the following books: Introduction to Algorithms, Third Edition by Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. TOPIC SLIDES READINGS DEMOS Introduction(administrative information) 1up 4up Preface ToC – Stable Matching(Gale-Shapley) 1up 4up Chapter 1 Gale-Shapley Algorithm Analysis(big O notation) 1up 4up Chapter 2 – Graphs(graph search) 1up 4up Chapter 3 – Greedy Algorithms I(basic techniques) 1up 4up Chapter 4 interval scheduling interval partitioning Greedy Algorithms II(shortest paths and MSTs) 1up 4up Chapter 4 Dijkstra red-blue Prim Kruskal Borovka Edmonds Divide and Conquer I(sorting and selection) 1up 4up Chapter 5 merging inversions quickselect Divide and Conquer II(integer and polynomial multiplication) 1up 4up Chapter 5 – Dynamic Programming I(basic techniques) 1up 4up Chapter 6 – Dynamic Programming II(sequence alignment, Bellman-Ford) 1up 4up Chapter 6 – Network Flow I(maximum flow theory) 1up 4up Chapter 7 Ford-Fulkerson pathological Network Flow II(maximum flow applications) 1up 4up Chapter 7 – Network Flow III(assignment problem) 1up 4up Chapter 7 – Intractability I(polynomial-time reductions) 1up 4up Chapter 8 – Intractability II(P, NP, and NP-complete) 1up 4up Chapter 8 – Intractability III(coping with intractability) 1up 4up Section 10.2, 11.8 – PSPACE(PSPACE complexity class) 1up 4up Chapter 9 – Limits of Tractability(extending limits of tractability) 1up 4up Chapter 10 – Approximation Algorithms(approximation algorithms) 1up 4up Chapter 11 list scheduling Local Search(Metropolis, Hopfield nets) 1up 4up Chapter 12 – Randomized Algorithms(randomized algorithms) 1up 4up Chapter 13 – Data Structures I(amortized analysis) 1up 4up Chapter 17(CLRS) – Data Structures II(binary and binomial heaps) 1up 4up Chapter 6(CLRS, 2nd edition) binary heap heapify Data Structures III(Fibonacci heaps) 1up 4up Chapter 19(CLRS) – Data Structures IV(union-find) 1up 4up Section 5.1.4(Dasgupta et al.) – Linear Programming I(simplex algorithm) 1up 4up (Chvatal) – Linear Programming II(linear programming duality) 1up 4up (Chvatal) – Linear Programming III(ellipsoid algorithm) 1up 4up Lecture notes(Michel Goemans) – References. 403 Forbidden.. ..

Springer, 1992. Here are the original and official version of the slides, distributed by Addison-Wesley. Abdelrahman Elzedy CEO & Founder Computer Science Student at FCI , Assiut UNI , Egypt About Contact Us FAQs Terms Of Usage Site Map copyright LearnGroup 2014 V.3.1 . If you are an instructor using the textbook and would like the latest version of the keynote files, please email email Kevin Wayne. Algorithms 4/e by Robert Sedgewick and Kevin Wayne. Linear Programming by Vaek Chvtal. Society for Industrial and Applied Mathematics, 1987. The lectures slides are based primarily on the textbook: Algorithm Design by Jon Kleinberg and va Tardos.

new york times tower pdf downloaddiet plan pdf free download p90xtabuas de esmeralda pdf downloadkeywords in java pdf downloaddownload textbooks pdf reddit nflsimple breadboard projects pdf downloadpro fide rege et lege pdf downloadlibrary management project in java pdf downloadfiguren reihen fortsetzen pdf downloadpdf to word converter open source free download

Revenir en haut

MessagePosté le: Lun 31 Oct - 07:14 (2016)    Sujet du message: Publicité

PublicitéSupprimer les publicités ?
Revenir en haut
Montrer les messages depuis:   
Poster un nouveau sujet   Répondre au sujet    LMFAO Index du Forum -> HORS SUJET -> Jeux Toutes les heures sont au format GMT + 2 Heures
Page 1 sur 1

Sauter vers:  

Index | Panneau d’administration | Creer un forum | Forum gratuit d’entraide | Annuaire des forums gratuits | Signaler une violation | Conditions générales d'utilisation
Template lost-kingdom_Tolede created by larme d'ange
Powered by phpBB © 2001, 2005 phpBB Group
Traduction par : phpBB-fr.com